A new stability test for linear neutral differential equations
نویسندگان
چکیده
منابع مشابه
A Test for Stability of Linear Differential Delay Equations*
The changes in the stability of a system of linear differential delay equations resulting from the delay are studied by analyzing the associated eigenvalues of the characteristic equation. A specific contour is mapped by the characteristic equation into the complex plane to give an easy test for stability from an application of the argument principle. When the real part of an eigenvalue is posi...
متن کاملNumerical Stability Test of Neutral Delay Differential Equations
The stability of a delay differential equation can be investigated on the basis of the root location of the characteristic function. Though a number of stability criteria are available, they usually do not provide any information about the characteristic root with maximal real part, which is useful in justifying the stability and in understanding the system performances. Because the characteris...
متن کاملExistence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملA new approach for solving fuzzy linear Volterra integro-differential equations
In this paper, a fuzzy numerical procedure for solving fuzzy linear Volterra integro-differential equations of the second kind under strong generalized differentiability is designed. Unlike the existing numerical methods, we do not replace the original fuzzy equation by a $2times 2$ system ofcrisp equations, that is the main difference between our method and other numerical methods.Error ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2018
ISSN: 0893-9659
DOI: 10.1016/j.aml.2018.02.005